Novel Delay-Dependent Stability Criteria for Uncertain Discrete-Time Stochastic Neural Networks with Time-Varying Delays
نویسندگان
چکیده
This paper investigates the problem of exponential stability for a class of uncertain discrete-time stochastic neural network with time-varying delays. By constructing a suitable LyapunovKrasovskii functional, combining the stochastic stability theory, the free-weighting matrix method, a delay-dependent exponential stability criteria is obtained in term of LMIs. Compared with some previous results, the new conditions obtain in this paper are less conservative. Finally, two numerical examples are exploited to show the usefulness of the results derived. Keywords—Delay-dependent stability; Neural networks; Timevarying delay; Linear matrix inequality(LMI).
منابع مشابه
Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملFINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS
This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...
متن کاملAdmissibility analysis for discrete-time singular systems with time-varying delays by adopting the state-space Takagi-Sugeno fuzzy model
This paper is pertained with the problem of admissibility analysis of uncertain discrete-time nonlinear singular systems by adopting the state-space Takagi-Sugeno fuzzy model with time-delays and norm-bounded parameter uncertainties. Lyapunov Krasovskii functionals are constructed to obtain delay-dependent stability condition in terms of linear matrix inequalities, which is dependent on the low...
متن کاملRobust exponential stability for uncertain stochastic neural networks with discrete and distributed time-varying delays
This Letter deals with the problem of delay-dependent robust exponential stability in mean square for a class of uncertain stochastic Hopfield neural networks with discrete and distributed time-varying delays. Based on Lyapunov–Krasovskii functional and the stochastic stability theory, delay-dependent stability criteria are obtained in terms of linear matrix inequalities (LMIs). Because of intr...
متن کاملAugmented Lyapunov approach to robust stability of discrete-time stochastic neural networks with time-varying delays
In this paper, the robust exponential stability problem of discrete-time uncertain stochastic neural networks with timevarying delays is investigated. By introducing a new augmented Lyapunov function, some delay-dependent stable results are obtained in terms of linear matrix inequality (LMI) technique. Compared with some existing results in the literature, the conservatism of the new criteria i...
متن کامل